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Corner transfer matrix eigenstates for the six-vertex model 

H Frahmt and H B Thacker 
physics Department, University of Virginia, Charlottesville. VA 22901, USA 

Received 11 April 1991, in find form 24 July 1991 

Abstract. Eigenstates of the comer transfer matrix (CTM) for the six-venex model are 
constructed, and their relation to the Bethe ansatz eigenstates of the XXZ Hamiltonian is 
discussed. In the ferromagnetic regime ( A >  1), eigenstates with any finite number of 
overturned arrows are constructed. They are related to  the Bethe ansatz states by Fourier 
transformation over spectral (rapidity) variables. This exhibits the role of the CTM as a 
lattice boost operator. For the antiferromagnetic regime, the relation between CTM eigen- 
states and those of the XXZ Hamiltonian is complicated by the filling of the sea and 
associated Bethe ansatz integral equations. For this case we C O ~ S ~ N ~  CTM eigenstates by 
fin1 showing that the Hamiltonian ground state is also an eigenstate of the CTM. Other 
CTM eigenstates are constructed from excited eigenstates of the Hamiltonian by Fourier 
transforming over the rapidity of each dressed excitation. We discuss the relationship 
between CTM eigenstates and a Heisenberg algebra o f  bosonic oscillators. 

1. Introduction 

The corner transfer matrix (CTM) method, developed some time ago in a series of 
papers by Baxter [ 1,2], has proven to be a powerful technique for calculating certain 
physical quantities in exactly solvable lattice statistical mechanics models. The results 
of such calculations are typically exact expressions for order parameters (e.g. the 
spontaneous magnetization of the king or  eight-vertex model [2], or the local height 
probabilities for the ABF restricted SOS models [3]). The characteristic feature of these 
results is that they are given in terms of infinite product expressions with elegant 
automorphic properties [4]. The form of these expressions follows from the extremely 
simple eigenvalue structure of the CTM. The spectrum of CTM eigenvalues for the 
eight-vertex, hard hexagon and RSOS models was first derived by Baxter using an 
indirect argument which avoided an explicit construction of CTM eigenstates. For the 
calculation of order parameters (one-point functions) this is sufficient, since the 
transformation which diagonalizes the CTM commutes with the spin at the origin. 
Choosing this spin to be the one whose expectation value is computed, the one-point 
functions may be obtained from the CTM eigenvalue spectrum alone without knowing 
the structure of the eigenstates. The extreme elegance of these calculations for order 
parameters raises the hope that the CTM approach may also provide new insight into 
the generally unsolved problem of computing correlation functions for exactly solvable 
models. If one hopes to apply the CTM formalism to the calculation of higher n-point 
correlation functions, information about the CTM eigenstates as well as its eigenvalues 
is needed. 

t Present address: lnrtitut fiir Theoretische Physik, Univenitit Hannaver, D-3000 Hannover I, Federal 
Republic of Germany. 
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Another reason for investigating the structure of CTM eigenstates is associated with 
the apparently fundamental role of infinite dimensional Virasoro [5] and Kac-Moody 
[6] algebras in the expressions obtained for order parameters. It was observed that 
the expressions obtained by Andrews, Baxter and Forrester for the local height prob- 
abilities of the RSOS models could be written as simple combinations of Virasoro and 
principally specialized Kac-Moody characters [4]. This provided strong evidence at 
the character level that the formulae for local height probabilities are connected with 
a OKO iiii cosei consiruciion o i  irreduciiiie Virasoro moduies. Tiis is panicuiariy 
remarkable, since this structure is exhibited by the exact results for non-critical models, 
which are not conformally symmetric. These observations appear to promise new 
insight into the structure of non-critical integrable systems based on the geometrical 
and analytic structures associated with these infinite dimensional Lie algebras. Further 
progress along these lines would seem to require an understanding of the structure of 
m e  C I M  anu l i s  eigensiaros. LIIL: IWC UI LIIC C ~ M  111 a iaiuso v ~ a s u r u  argcma nab Deen 
discussed previously [7]. This algebra generates diffeomorphisms of the spectral para. 
meter (lattice rapidity) space, and the CTM itself provides the one parameter subgroup 
corresponding to uniform rotations of the spectral parameter (boosts) [8]. Thus the 
eigenstates of the CTM are expected to fall into irreducible Verma modules which carry 
representations of the lattice Virasoro algebra. To construct the CTM eigenstates we 
will diagonalize the Virasoro generator Lo, which is related to the CTM by 

.L. - - . .___I I.. .: -.-..-.-. - _ _ _ I ^  _C.L^  I___:--,.L.:-- In --...- -,-- L_. L.. L . . ~ ~  

A(m) = exp(-aL,) (1.1) 

where A ( a )  is the CTM, and 01 is the spectral parameter. For the six-vertex model, Lo 
is given explicitly by the first moment of the XXZ spin chain density [9]. This is the 
same spin chain density whose zeroth moment Hxxr (i.e. the XXZ Heisenberg 

statements hold for the XYZ density and the eight-vertex model.) The boost property 
of Lo can be expressed at the operator level in terms of the commutator between Lo 
and the monodromy matrix S(a )  [8] whose components are used to construct the 
row-to-row transfer matrix and its Bethe eigenstates in the algebraic Bethe ansatz 
(quantum inverse) method. In this form it is seen to follow directly from the Yang- 

In this paper, we describe an explicit construction of CTM eigenstates for the case 
of the six-vertex model. This problem has recently been investigated by Davies [lo], 
who has constructed the CTM eigenstates for the case of N = 1 and 2 overturned arrows. 
The one- and two-body states we construct in section 2 are equivalent to those obtained 
by Davies. However, our approach exposes a close connection with the structure of 
the Bethe ansatz which is used to construct eigenstates of the row-to-row transfer 
matrix (RTM) and XXZ spin chain Hamiltonian. It is this connection which allows us 
to construct eigenstates with any number of overtumed arrows. (The COIIneCtiOn 
between the CTM and Hamiltonian, or RTM, eigenstates was first pointed out in [71.) 
We consider first the ferromagnetic regime of the XXZ chain, A > I, for which few-body 
excitations are constructed by a Bethe ansatz for the overturned spins on the ferromag- 
netic (all spins up) ground state. For this case, the CTM acting on the Bethe eigenstates 
induces a uniform shift of the rapidities labelling each overturned spin. The eigenstates 
of the CTM are thus obtained by Fourier transforming over each of the rapidity variables 
in the state. In the limit A - t o o  (zero temperature limit of the six-vertex model), the 
rapidity becomes equal to the momentum, and the integer or half-integer eigenvalues 
of the boost generator Lo are associated with the site number of the overturned arrow. 

Hami!!nnian) zppcars in !he cxpansia" nf the TOW-!O-T!?W trznrfer ZZ!Ti.X. (SiZi!X 

nzxter po,.z!iQnS (see se&?n 3)1 
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In this case, a mode with eigenvalue I+$ corresponds to an overturned spin at site L 
For 1 < A < m ,  the eigenvalues are still half-integers, but now the eigenvalue I + $ > O  
corresponds to a down-arrow wavefunction which is peaked near site I and falls off 
exponentially for large site number j. The wavefunction also vanishes identically for 
site numbers j < 0. The exponential fall-off of the wavefunction for large j is determined 
by A where A = cosh A. 

In the antiferromagnetic regime A <  -1, the Hamiltonian eigenfunctions for the 
ground state and low-iying excited states are much more compiicated, describing 
particle excitations in a filled Dirac sea. In the infinite volume limit, the sea is described 
by a density function in rapidity space which, for a given excitation, is determined by 
solving a Bethe ansatz integral equation. For this case we find that the action of the 
CTM on the Hamiltonian ground state no longer induces a uniform rapidity shift of 
the bare modes. Rather it induces a non-uniform shift which leaves the vacuum density 
unchanged. Tinus the 'iamiiionian grounci state is invariant under CTM boosis, and it 
is therefore also an eigenstate of Lo with zero eigenvalue. Although it is difficult to 
demonstrate this result directly from the Bethe ansatz expressions, we have found an 
altemative derivation which is valid to all orders of perturbation theory around the 
antiferromagnetic, anisotropic limit A + -m. The proof is presumably reliable 
throughout the antiferromagnetic regime A < -1, but cannot be used in its present 

Having established the fact that the Hamiltonian ground state is also an eigenstate 
of &, we then consider the low-lying excited states of FIX,,=. Here the physical 'particles' 
consist of bare excitations (n-strings and holes) along with comoving fluctuations in 
the vacuum density (whose form is given by another Bethe ansatz integral equation). 
The action of Lo is again that of a physical boost operator, shifting the rapidity of 

.-̂ _ .̂  _I: --..-- It.^ A:---.l---A ---:.-- I * ,  ,. 
,0111, L U  "IDCUD> L U G  ULJUlUG,SU , G p , , G  ,a,. 1. 

bcth the bare excitctien 2nd its ccmoving density P.K2xtien. 

2. Few-body eigenstates 

Both the Hamiltonian and the operator Lo (1.1) of the XXZ chain commute with 

construction of eigenstates can be achieved considering each sector separately. In the 
sectors of one and two particles this construction has been done by straightforward 
solution of the Schrodinger equation: for the Hamiltonian one obtains plane waves 
for n = 1 and superpositions of these with appropriate phase factors reflecting the 
scattering phaseshift for n = 2. For the operator Lo the corresponding eigenstates can 
be constructed following the same lines [lo]: the amplitudes of the n = 1 states are 
given in terms of hyperbolic polynomials leading to localized states in the ordered 
regime, for the n = 2 states the amplitudes can be written in terms of the n = 1 results. 
Unfortunately, however, this approach is not easily generalized to n > 2 and thus makes 
the study of the particularly interesting antiferromagnetic regime (where n is of the 
order of the number of lattice sites) impossible. 

For the Hamiltonian the solution of the general n case is provided within the 
framework of the algebraic Bethe ansatz and the quantum inverse scattering method 
(QISM): here we construct commuting generators that allow us to build any state starting 
from the ferromagnetic vacuum. 

In this section we will reconsider the construction of eigenstates of Lo with one 
and two overturned arrows. Rather than solving the corresponding eigenvalue problem 

the r-component of the tota! spin, that is the number of overtumed arrows, Hence the 
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directly, however, we make use of an intimate relation between the eigenstates of Lo 
and those of the XXZ Hamiltonian. Together with the results of the QISM this relation 
allows us to extend this method to sectors with arbitrary n as will be discussed in the 
following sections. 

We start with a short review of the quantum inverse formalism for the six-vertex 
model. The elementary vertex is defined in terms of the R-matrix: 

H Frahm and H B Thacker 

sinh AS; \ 
(2.i)  

/sinh(A/2 - i d ; )  
= \ sinh AS: sinh(A/2+&,?)). 

Here the elements of R, are labelled by horizontal arrows in an auxiliary space while 
the operators Sf are spin-operators acting on the vertical arrows at sitej. With R, the 
monodromy matrix is given as 

Note that each of the elements of T(a) is an operator acting on a chain of spins with 
S = f .  The diagonal elements form the generating functional for integrals of motion 
for the spin-chain: the row-to-row transfer matrix is f ( a )  =trace T(a) satisfying 
[ f ( a ) ,  t ( p ) ]  = O .  The off-diagonal elements generate the spectrum of t ( a )  (see below). 

It is easily seen that the R-matrix reduces to a permutation operator at the point 
a = ih. Consequently, the monodromy matrix (2.2) reduces to a simple shift operator 
and one can define a spin-chain Hamiltonian on a lattice with periodic boundary 
conditions (i.e. S,,, = S,) by 

a 
Hxxz = -i TIn(f(a)/sinhN[f(A  CY)])^=^^ =x H ( j ,  j +  1) (2.3) 

o u  j 

with 

1 
sinh A 

H ( j ,  j +  1) = - (f(S;S,:+, +S,:S:+,) -A(S;S;+, -:)) 

(2.4) 

Clearly, the state with all spins up IO) = I t T T  . . . ) is an eigenstate of the transfer matrix 
with eigenvalue 

(2 .5 )  

Starting from this state more eigenstates can be constructed using the properties of 
the monodromy matrix. One finds that (note that [ B ( a ) ,  B(p)]=O) 

(2.6) 

to( a) = (sinhN[f(A -in)] + sinhN[f(A + ia)]). 

la,. . . a,+,)= B ( a , ) .  . . B(aM)IO) 

is an eigenstate of t ( a )  provided that the aj satisfy the Bethe ansatz equations: 

(2.7) 
sinh f ( A  +ia.) N sinh(fi(a, - a j ) - A )  r . . I , .  . '.1 = n  . .,,., Lsinh i ( n  -iajj J ;gj sinn(p(a, -ajj+A)' 

Each of these states is an eigenstate of the Hamiltonian (2.3) with eigenvalue 



CTM eigenstafes for the six-vertex model 5591 

where the pi are the momenta of the elementary excitations (magnons), related to the 
rapidities ai by 

2 = e-I=. (2.9) 
wz -1  

elP = - w = e ”  
w - 2  

The eigenstate corresponding to a single magnon with momentum p ( z )  on the 
lattice with periodic boundary conditions is (up to an overall phase absorbed into the 
definition of the origin of the lattice) 

(2 .10)  

Note that as long as we consider an infinite chain with only a finite number of spins 
overturned, the Bethe ansatz equations d o  not impose any restrictions on the value of 
z =exp(-ia). 

In this units introduced above the infinitesimal generator for the CTM is given as 

L,, = E  jH (  j ,  j +  1 ) .  (2 .11)  
j 

For Lo the notion of periodic boundary conditions is not a sensible one. However, as 
we shall show below, the eigenstates of L, are localized so that the effect of the 
boundaries is negligible in the limit of an infinite chain. Acting with Lo on the one 
magnon state (2 .10)  yields 

w - 2  w z - 1  
x ( ( j - 1 )  - +j- 

w z - 1  w - z  

Comparing (2 .10 )  and (2.12) (and neglecting boundary terms) we find that 

(2 .12 )  

(2.13) 

This identity shows that the eigenstates of the CTM are Fourier transforms of the 
Hamiltonian eigenstates-the integration being performed with respect to the rapidity 
z of the magnon: the eigenmode operators are given by 

(2 .14)  

From (2.13) it follows that I/)aZ’P(/)lO) are the normalized eigenstates of Lo with 
eigenvalues 1. Furthermore, analyticity requires I + +  to be an integer. 

We now want to analyse the structure of these eigenstates in some detail: defining 

to=x oj(1)S.rlo) (2 .15)  
i 

one obtains 

(2 .16)  
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An interesting property of the states 11) is that-depending on the sign of I-they are 
different from the ground state on the positive or on the negative half-axis only, 
although they are derived from the spin-wave eigenstates of the Hamiltonian (2.10) 
which has a uniform expectation value of the magnetization ( S ; ) : a j ( l )  = 
and a,<,( / )  = O  for I>O.  Although this result is quite surprising in the context of this 
derivation, it is a consequence of the fact chat the term H(O.1) is missing in Ln, and 
hence Lo is a sum of operators acting on sites with j z  1 ( j <  1) only. 

H Frahm and H B Thacker 

The non-zero amplitudes for I > O  are (see also [lo]): 

(2.11) 

( P p @ ' ( x )  are Jacobi polynomials.) We find that all of these states are localized around 
j = k +  1 falling off exponentially for j >> k, hence justifying our treatment of the 
boundaries. The states with the lowest eigenvalues are 

and (2.18) 

t 
1 

figure 1. Amplitudes lo,(r)l* d t h e  eigenstate 11=21/2) of the operator for different 
valuer of the anisotropy 2 p = ( w 2 + l ) / w .  In the king limit (w-m) the eigenstetes are 
a,( / )  = 6j, ,+, ,2.  As the anisotropy is reduced the eigen~tate~ become broader-diverging as 
A - 1 .  
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An example of a state with larger I is shown in figure 1: in the king limit A-CO the 
eigenstates of Lo are localized overturned spins 

As A becomes smaller the state broadens, indicating the transition to the disordered 
state at the critical point A = 1. 

Let us now consider states with two overturned spins, i.e. two interacting spin 
waves with rapidities z and f: From the algebraic Bethe ansatz we obtain the correspond- 
ing eigenstate of the Hamiltonian: 

(2.20) 

Again, it is straightforward to compute the action of Lo on this state and comparison 
with the state (2.20) shows that 

(2.21) 

This allows us to construct the eigenmodes of Lo explicitly by Fourier transformation 
of the two-magnon states (2.20) with respect to the rapidities z and 5. These transforma- 
tions are to he performed independently. This constitutes the underlying reason for 
the previous observation that the two-body amplitudes can he written in terms of the 
one-body ones [lo]: it merely reflects the nature of Bethe ansatz wavefunctions of the 
XXZ Hamiltonian, namely the fact that they can be written as suitable superpositions 
of single-particle plane wavefactors. 

Note, however, that this procedure requires that the two rapidities be independent, 
i.e. z and can he independently varied and always satisfy the Bethe ansatz equations. 
This is true for JzJ = I l l= 1 (i.e. two interacting plane wave magnons). In the king limit 
( w  + CO) this gives (we assume I m ) :  

m--l 

w( I + t)W m +$)lo) 0~ 1 S;-jS;+,+jIo) (2.22) 
k = O  

for the eigenstate of Lo corresponding to eigenvalue I + m + l .  Note that for m >  1 
these states are not pure states with overturned spins at sites l and m as one might 
have concluded from (2 .19) .  Furthermore, the two overturned spins are always separ- 
ated. Hence the states (2.22) do not form a complete set. 

However, the Bethe ansatz equations (2.7) allow for a different type of solution-so- 
called n-strings: sets of equally spaced rapidities a with the same real part 

(2.23) 

In the two-magnon sector the only possible configuration of this type is a two-string 
corresponding to a hound state of two magnons. The eigenstate of the Hamiltonian is 
again of the form (2.20) with z =  d 2 ) w  and e =  z'*'/ w and in the king limit ( w - m )  

k = 1, . . . , n. a'"' - - ag '+ ih(n  + 1 -2k) 
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these states reduce in fact to two neighbouring overturned spins moving together with 
centre of mass momentum being related to d2' through 

H Frahm and H B Thaeker 

(2.24) 

Substituting the expressions for z and 5 into (2.21) one finds 

a 
L0(Z'2'W, P / W )  = P I -  p w ,  2'2)/w), (2.25) 

Hence the corresponding eigenstate of Lo is obtained by Fourier transformation with 
respect to d2'-the only free parameter left when one is restricted to the Hilbert space 
of the spin chain. In the king limit this gives 

dZ" )  

W)(l)lo)= s;s;+,/o) (2.26) 

for the eigenstate of Lo with eigenvalue I = 1,2, .  . . , Again, the exceptional nature of 
this eigenstate of Lo [ 101 is just a reflection of the different nature of the corresponding 
Bethe ansatz eigenstate of the Hamiltonian. 

We have now constructed all the eigenstates of Lo in the sector with two overturned 
spins. The arguments used here can be applied to any state with a finite number of 
overturned arrows in the infinite system. For a system of finite length, the Fourier 
transform over the rapidities has to be replaced by a summation over discrete values. 
Analogous to the situation for the 2-strings we expect that these discrete values have 
to be chosen such that they satisfy the Bethe ansatz equations (2.7). 

3. N-body statesintertwining of the CTM with the quantum inverse algebra 

We can interpret and extend the results of the previous section to include any finite 
number of overturned arrows in an infinite volume. The relation between CTM eigen- 
states and Bethe ansatz states is expressed by an algebraic relation between the CTM 

and the elements of the QISM monodromy matrix (2.2) which follows directly from 
the Yang-Baxter relations [SI. 

The vertex matrix (2.1) can be shown to satisfy a set of Yang-Baxter equations 
(YBEJ)  of the form 

[ R j ( ( ~ ) R j + , ( p ) l ~ , j + , ( a  -0) = Y,j+i(a - P ) [ R j ( P ) R j + i ( a ) l .  (3.1) 

Here, the operator Y, ,+ , (a -p)  is also a vertex like R, and R,,,, but written as a 
two-spin operator rather than a 2 x 2  matrix of one-spin operators. Equation (3.1) is 
thus an operator relation for each component of the 2 x 2 matrices R,R,+, . For an 
infinitesimal argument, Y, j+ ,  is related to the XXZ spin chain density (2.4) by 

(3.2) y , j+I (~ )  = l+EH(j ,  j +  1)+O(e2) .  

Expanding around (Y = p in (3.1) we obtain a useful infinitesimal form of the YBEr 

[ H ( j , j + l ) ,  R , ( a ) R , + , ( a ) l =  R ~ ( ( Y ) R , + , ( ( Y ) - R ~ ( ~ ) R ~ + , ( ~ ) .  (3.3) 

Multiplying both sides by j and summing over j we get a commutation relation between 
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the infinitesimal CTM generator (2.11), and the monodromy matrix (2.2) [8,11], 

(3.4) 

It is easy to see that this commutator represents an algebraic statement of the results 
obtained i2 section 2. We only need to note that the Bethe ansatz states are obtained 
algebraically by (2.6), i.e. by repeated application of E-operators to the ferromagnetic 
ground state. Since Si. j is an eiement of the monodromy matrix, it satisties (3.4) 

(3.5) 
d 

dru [Lo,  E(a)l=-EB(a). 

The Fourier transformed E-operators in (2.14) are thus the CTM eigenmode operators 

r L , , w i =  rw. (3.6) 

A CTM eigenstate containing any number of one-strings may be constructed from the 
ferromagnetic ground state by applying the eigenmode operators Y(1). The construction 
of n-string Bethe ansatz states for n z 2 requires a continuation ofthe rapidity arguments 
of the E-operators to complex values. Our explicit consideration of the 2-string state 
in the previous section demonstrates that there is no difficulty in principle with this 

satisfying (2.23). (Otherwise, the corresponding coordinate space wavefunction will 
blow up exponentially for large site number.) For each value of n, one may define an 
n-string Bethe ansatz operator 

@ " ' ( a ) = B ( a + i ( n - l ) A ) B ( a + i ( n - 3 ) A )  ... B(ol-i(n-l)A). (3.7) 

This compound operator also satisfies the shift property (3.5) with respect to the 
common real part (I of the n-string rapidity 

^^"*:".."*in" ... ~ E I " I I . . ^ ~ ^ " " l t ~ ~ ^ ^ . . . " I ~ ~ ~ n " : ~ : . . , ^ m . . ~ . " * ^  :"*^ .. ̂ tinnr 
I"..,I.LYY.LY.., .,U LY1.B ',a nr L U L Y L L J  Y ' L Y a . 6 '  L,.C I",.ly.C.. L Y y L Y B L J  '.L6YL..C,.," llll" ,.-'L.,..E,1 

d 
dol [ L o ,  9s'"'(u)]=-%s'")(a). (3.8) 

Thus we may construct the corresponding n-string CTM eigenmode operators by Fourier 
transforming over the real part of the n-string rapidity 

(3.9) 

where we have taken %(")(a) = &")(e'"). The ferromagnetic ground state has an Lo 
eigenvalue of 0, while all other eigenvalues are positive integers or half-integers. (Here 
we are considering a semi-infinite chain with the sum in (2.11) going from j =  1 to 
j = m.) In section 6 we will discuss the level-by-level counting of states and show that 
the CTM eigenstates exhibit the same degeneracy structure as a Heisenberg algebra of 
bosonic oscillators. 

4. Filling the sea-the role of the Bethe ansatz equations 

In the previous sections we have seen that the CTM eigenstates in the ferromagnetic 
regime may be constructed by Fourier transformation over the rapidity parameters in 
the Bethe ansatz for the corresponding XXZ Hamiltonian. In this case, the ferromag- 
netic ground state with all spins up is also the reference state upon which the Bethe 
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ansatz is constructed. In the infinite volume limit with a finite number of down spins, 
the spectral parameters in the wavefunction form some number of n-strings, with the 
real rapidity of each n-string being independently variable. Thus, each real rapidity 
coordinate of an n-string may be independently Fourier transformed. A more compli- 
cated situation arises in the antiferromagnetic regime A <  -1, where the ground state 
has half of the spins turned down (assuming that the total number of spins N is even). 
The ground state and low-lying excited eigenstates of the Hamiltonian are described 
by highly non-trivial n-body Bethe ansatz wavefunctions, where n is approximately 
N / 2 .  Furthermore, the rapidity parameters which appear in these wavefunctions are 
not all independent, but must be chosen to satisfy the Bethe ansatz equations. These 
may be regarded as periodic boundary conditions for the finite volume system. They 
limit the number of independent rapidity variables in the low-lying states to a few, 
corresponding to the number of physical 'particles' in the system. In the limit of infinite 
volume the Bethe ansatz equations reduce to integral equations which determine the 
density of modes in the filled Fermi-Dirac sea for the ground state and low-lying 
excited states. 

We would now like to extend our discussion of CTM eigenstates to include the 
antiferromagnetic case. The prescription we obtained for the excitations above the 
ferromagnetic (empty sea) ground state, i.e. Fourier transformation over each rapidity 
variable in the wavefunction, clearly needs to be altered for the case of the filled sea. 
Fourier transformation over the rapidities of the vacuum modes would necessarily 
include values which did not satisfy the Bethe ansatz equations. Such states are not 
eigenstates of the Hamiltonian. The correct generalization of the previous discussion 
to the case of the filled sea may be motivated by the physical requirement that the 
CTM retain its interpretation as the lattice Lorentz boost operator. As we will see, the 
eigenstates of the CTM for the filled sea case are obtained from the eigenstates of 
the Hamiltonian by Fourier transforming over the rapidity variables which describe 
the location of the physical excitations (n-strings and holes) along the real rapidity 
axis. It is only these rapidity variables (and not those of the vacuum modes) which 
represent true degrees of freedom of the wavefunction. Thus, for example, the set of 
Hamiltonian eigenstates describing one physical particle excitation will be Fourier 
transformed over a single rapidity variable. In general, the number of physical particles 
in a state is easily determined by computing the energy eigenvalue and seeing how 
many rapidity variables it depends on. 

The construction of the ground state and low-lying excited states for the XXZ 
Hamiltonian has been discussed in detail in several references [13]. In the infinite 
volume limit the discussion simplifies. Following Faddeev [14], we can summarize the 
relevant results as follows. The ground state is characterized by a density function 
p,.,(a) giving the density of modes in the filled Dirac sea. Similarly, an excited state 
with n holes at  rapidities (a,, , . , , an} has a density of sea modes given by a function 
of the form 

H Frahm and H B Thacker 

The fact that the difference between the excited and ground state densities is given by 
a sum over terms associated with individual holes and that each of these terms depends 
only on the difference a -a, will be crucial in the construction of CTM eigenstates. 

Using the density function pvac(a)  the filling of the sea may be concisely written 
in terms of the B-operators of the algebraic Bethe ansatz. Denoting the ferromagnetic 
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(all spins up) reference state by IO), the physical ground state is [14] 

In)=exp(  N [ dap, ,da)  In B(a)]lO) (4.2) 

The excited states with holes at a,, . . . , a. are then written 

 ai})= i B(ai)ln) (4.3) 
i = l  

where the ‘dressed’ operators &a() create the physical excitations, and are given 
explicitly by 

&a i )=exp  d a u ( a - a j ) I n B ( a )  . (4.4) {I 3 
In constructing CTM eigenstates, we will utilize the shift property of the dressed h 
operators 

(4.5) 

which follows from (3.5) and (4.4). The Fourier transformed operators are thus 
eigenmode operators of Lo 

[Lo,S . (r ) ]=r3 . (r )  (4.6) 

where 

@ ( I )  = $ z z - ‘E(z )  (4.7) 

and we have set z = cia. 
The only other ingredient required for constructing the CTM eigenstates is a know- 

ledge of the action of Lo on the filled-sea ground state In). As we have discussed, this 
state contains no adjustable rapidity parameters. In the context of the lattice Lorentz 
group [8], In) is the Lorentz invariant vacuum state. Such physical reasoning suggests 
that In) is not only an eigenstate of the Hamiltonian, but also of Lo (and hence, of 
the CTM). In fact, we will show in the next section that 

Lola) = 0 (4.8) 

in other words, the ground state of the Hamiltonian is also an eigenstate of Lo with 
zero eigenvalue. From the point of view of the explicit Bethe ansatz construction of 
In) this result is quite remarkable. An explicit verification of it would expose an intricate 
interplay between the action of the operator Lo and the Bethe ansatz equations which 
determine the density of modes in the sea. We saw that, in an infinite volume with a 
finite number of overturned spins, the operator eiduL0 acts as a rapidity shift (boost) 
operator, i.e. it moves each mode in rapidity space by an equal infinitesimal amount 
Sa. However, the result (4.8) implies that, when acting on the filled sea, the shift 
induced on a mode by Lo is not just Sa but rather proportional to Sa/p,.,(a). (Note 
that pvac(a) is not a constant, i.e. the density of modes in the sea is non-uniform in 
rapidity space, and therefore the shift induced by Lo must also be non-uniform in 
order to leave the state unchanged.) The detailed combinatorics required to obtain 
(4.8) from the exact many-body ground state wavefunction have not been worked out. 
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Instead we have adopted a completely different approach to proving this result, using 
Schrodinger perturbation theory around the point A = -m to show that the result (4.8) 
is valid to all orders in l / A .  

H Frahm and H B Thacker 

5. Identity of the CTM and Hamiltonian ground state in the antiferromagnetic regime 

In this section we shall use Schrodinger perturbation theory to construct the ground 
state of the XXZ Hamiltonian for large negative A (i.e. in the antiferromagnetic regime) 
and show that this state is also an eigenstate of Lo. We shall consider a spin chain 
with fixed boundaries-again the difference from periodic boundary conditions should 
be negligible in the thermodynamic limit. 

To have a well defined problem we consider a chain on the half-axis with sites 
numbered from 1 to N.  This procedure avoids the difficulty of having to deal with a 
large number of degenerate states (without imposing normal-ordering the ground state 
of Lo is ferromagnetic (antiferromagnetic) on the negative (positive) half-axis). The 
final result is true for any numbering of the sites: if In) is an eigenstate of bot: Lo and 
H (with sites labelled 1,. . . , N )  then it is also an eigenstate of the operator Lo= Lo- 
N / 2 H  defined on the symmetric chain: 

(Lo- ( N / Z ) H ) I n )  = ( 1 0 -  (NJ2)Eo)Ia) .  (5.1) 

At A = -m the system reduces to the king model and any configuration of spins 
is an eigenstate of the Hamiltonian. The ground state of both the Hamiltonian and Lo 
is the NeBl state 

In'"') = lt&tltl . . . ). (5.2) 

The boundary conditions at site 0 (for H )  and at site N (for H and Lo) ensure that 
there is no degeneracy with the state with all the arrows turned. 

The excited states with zero magnetization are conveniently labelled by the positions 
of pairs of spins that are flipped compared to the ground state, i.e. for a state with 
one pair oi flipped spins at i n ,  n + i): 

In)= I t 1 1 2 f 3 ~ .  . t f i - l t " & n + l l " + * ~  , , ). (5.3) 

Any state in the zero magnetization sector can be labelled in this fashion giving rise 
to a complete set of states of the form In,, n 2 , .  . . ) with nktl - n k  3 2 .  

The first-order correction to the ground states has non-vanishing amplitudes only 
for states of the form (5.3): 

where 

1 
2A 

V" = - 1 s;s;+, + s,-s;+, 
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and WO, W. are eigenvalues of the king operators (we choose a different normalization 
of the operators here than in (2.4) to  simplify the expressions-this does not affect the 
perturbative eigenstates obtained) 

‘4‘0’ = (s;s;+, +a) Lbo’ = 1 j(s;S;+, +a). (5.6) 
I J 

The matrix elements in (5.4) are easily obtained to be 

Hence, due to the cancellation of the factors n in the matrix element and the eigenvalue 
denominator for Lo to first order in A-‘ the ground states of the Hamiltonian and Lo 
remain identical. 

To second order the correction to the ground state amplitudes is 

Two cases have to be considered separately: for In - n‘I > 2 we have 

1 
2A (nn’l vHln) = - H‘O’/ nn ’) = 21 nn ’) 

(5 .9)  
n‘ 

2A 
(nn’l V,ln)=-. LPJ1nn’)=(n+n’) lnn‘)  

Hence, one obtains for the amplitude of the state Inn’) in the expansion of the ground 
state of Lo 

The same is obtained if one computes the amplitude for the Hamiltonian ground state. 
The unperturbed eigenvalues are different if In - n’l = 2: 

H‘O’lnn’)= Inn’) LP’lnn’) = f ( n  + n’)lnn’).  (5.11) 

Again, the corresponding amplitudes in (5.8) are identical for H and Lo due to the 
cancellation of factors oc ( n  + n’),in the matrix elements and the denominators in the 
expression for Lo.  

We have shown that up to second order in A-’ the ground states of the antiferromag- 

Going to higher orders in this perturbational analysis, the algebra becomes more and 
more tedious. It is quite straightforward, however, to convince oneself that the above 
result holds to any order in A-‘. While this was to be expected on physical grounds 
(the vacuum should remain unchanged under a boost) this result is by no means trivial 
in the context of the Bethe ansatz analysis (see the discussion in the previous section). 

netic ,xxz Fllrtli!!oniln .!IC! the corresponding !attice boost operator LG are iden!ica!l 
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6. m eigenstates and bowoic oscillators 

As mentioned in the introduction, one of our motivations for studying CTM eigenstates 
is to analyse their structure in terms of representation theory of Virasoro and Kac- 
Moody algebras. Although a full discussion of this subject would go beyond the 
intended scope of this paper, we will show here that the CTM eigenstates for the 
six-vertex model can be identified with those of an infinite set of bosonic oscillators 
a., n& satisfying a Heisenberg algebra 

and having the property 

and 

[U", NI = 0 

where N is the number operator which gives the number of down arrows (see below). 
Taking a', = U-", the operators a, and a-*( n > 0) are, respectively, annihilation and 
creation operators for the nth oscillator. The relation between the Heisenherg algebra 
(6.1) and the harmonic modes of a vibrating string is at the heart of the algebraic 
structure of string theory. The emergence of a similar structure in the study of CTMS 

is quite remarkable. 
with the 

spins numbered from 1 to OD 

We work in the ferromagnetic regime and consider the eigenstates of 

(6.4) 

Also, define the number operator which gives the number of overturned arrows in a state 
m 

N = i  c ( I -uJ)  
"-1 

and consider the generating function 

m Q(Q,z)=TI{Q L N  oz }=  z"Tr,qLo 
" - 0  

(6.5) 

where Tr, is the trace over the subspace with n overturned spins. The function Q(g, z) 
summarizes the information on the level structure and degeneracy of CT'M eigenstates. 

For n = 0 there is only one state (all spins up) and we choose Lo to have eigenvalue 
0 on this state, i.e. Qo(q) = 1. For n = 1 the eigenstates are given by (2.15). Taking the 
sum in (2.15) to go from j=1  to CO, the state I/) vanishes for I<$. Thus the lowest 
eigenstate in the n = 1 sector is I$), and the full set of states in that sector is given by 
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By choosing N, such that the states lI+i) are orthonormal, we may identify these states 
with those of the first mode a, of the Heisenberg oscillator (6.1) acting on the lowest 
state l$)+t1), 

I/+;)= (a;)'ln,). (6.9) 

The contribution of these states to the generating function (6.6) is 

(6.10) 

The absence of other Heisenberg states in the n = 1 sector requires that 

a:ln,) = 0 I >  1. (6.11) 

For the n = 2 states with two downtumed spins, the lowest eigenstate of Lo is the 
2-string state with Lo eigenvalue of 1, 

(6.12) 

All of the other states in the n = 2 sector can be obtained formally from In,) by exciting 
the first two Heisenberg oscillators 

(6.13) 

Again, the right number of states is obtained by assuming that the higher Heisenberg 
oscillators cannot be excited in the n = 2 sector 

a:ln,) = 0 r>z.  (6.14) 

The easiest way to demonstrate these results is to consider the limit A+m where, as 
we saw in section 2, the 2-string state with eigenvalue I reduces to two adjacent flipped 
spins at sites I and I +  1, and the states with two 1-strings reduce to a simple linear 
combination of states with two flipped spins separated by at least one unflipped spin. 
(Thus adjacent flipped spins are always bound.) For finite A, we may appeal to the 
fact that the operator Lo for any value of A may be obtained from the Lo for any other 
value of A by a unitary transformation (since the eigenvalues remain unchanged). 
Thus, each Lo eigenstate for finite A may be regarded as the unitary transformation 
of a particular spin state at A = m .  (For n = 2 ,  these states are formed by taking 
appropriate linear combinations of the states (2.22) with I + m fixed.) The contribution 
of the n = 2 sector to the generating function (6.6) is 

(6.15) 

For general values of n, it is easy to see that the lowest eigenstate in each sector 
is the n-string state with eigenvalue n / 2  

(6.16) 

The full set of states in each sector n exactly fills out the spectrum expected from the 
first n harmonic oscillators 

(6.17) (a'.)'. . . . (a;)'qa;)'qn") 
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which has an Lo eigenvalue given by 
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n 
V I , + -  "=, 2 

The contribution of sector n to the generating function is 

Thus, the full generating function (6.6) is 

(6.18) 

(6.19) 

(6.20) 

I f  we set z =  1 (i.e. sum q L o  over all states, independent of the number of overturned 
spins), we obtain the following fermion-boson equivalence formula 

m 

= " = I  i7 ( 1 - q  L/*) = " - 1  n (1+q"/2). 

(6.21) 

(6.22) 

The last result shows that if one ignores the distinction between different numbers of 
down arrows, the CTM eigenstates may also be regarded as a collection of free fewionic 
oscillators. This result can be obtained directly in the A = co limit by identifying each 
domain wall ( =boundary between adjacent antiparallel arrows) as an occupied fermion 
level. Unlike the case of overturned arrows, the contribution of each domain wall to 
the Lo eigen:.a!ce is addi:i:re. IC !e:-: of :he Uei:ecbe:g operato:: (!%I), one may 
construct a representation of the Virasoro algebra which contains the CTM generator Lo 

L.=f :  1 (6.23) 
m 

I = - -  

These operators satisfy the Virasoro algebra 

[L,, L.]= (m-n)L , , ,++n(m2- l )6 ,  ,_". (6.24) 

Although these results are obtained via a level-by-level counting of states, the 
problem of identifying the bosonic oscillator states (6.17) with the Fourier transformed 
Bethe states discussed in section 2 has not been resolved for general n. The complication 
involves the degeneracy of states at higher levels, which introduces an ambiguity in 

Heisenberg oscillators in terms of the Fourier transformed n-string operators '@'' ' (I)  
would be very useful. By standard methods, the Heisenberg algebra can be promoted, 
via a vertex operator construction, to a full representation of a level 1 SU(2) Kac-Moody 
algebra. The role of Kac-Moody algebras in the CTM formalism, though clearly 
indicated at the character level [4], still remains mysterious. 

identifying boson s!a!es with spin ga!eS: An eup!i& operator conc!ruc!inn of the 
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